Autor/a |
Abstract Los glicolípidos son productos de alto valor debido a sus propiedades amfipáticas, que los dota en un amplio rango de aplicaciones en los sectores químicos (ej., biosurfactantes) o biomédicos (ej., adyuvante de vacunas). Dependiendo de la unidad lipídica que los forma, los glicolípidos son clasificados en diferentes familias. Si la unidad lipídica es una ceramida o diacilglicerol, los glicolípidos son conocidos como glicoesfingolípidos o glicoglicerolípidos (GGL) respectivamente. Mientras que los glicoesfingolípidos han demostrado jugar papeles clave en diversos procesos biológicos, los glicoglicerolípidos son compuestos interesantes debido a su potencial uso como adyuvantes de vacunas o supresores tumorales. Aunque el interés por estos compuestos es muy alto, su aplicación se ve obstaculizada por su baja disponibilidad y altos costes de producción. La síntesis química requiere de complejos pasos de protección y desprotección para conseguir la deseada regio- y estereoespecificidad del enlace glicosídico, que conlleva a una reducción del rendimiento y eficiencia del proceso. Por ello, consideramos la ingeniería metabólica como estrategia potencial para la producción de glicolípidos y nos centramos en construir una plataforma de ingeniería metabólica en E. coli para conseguir estas complejas estructuras de interés. En previos estudios, nuestro grupo reportó que la sintasa de glicolípidos MG517 de Mycoplasma genitalium era funcional y que glicoglicerolípidos podían ser obtenidos a partir de UDP-glucosa (UDP-Glc) y diacilglicerol (DAG). Adicionalmente, la primera generación de cepas modificadas demostró que la disponibilidad de DAG era limitante en la producción de GGL (Mora-Buyé et al., 2012). En el presente proyecto, cinco estrategias diferentes de ingeniería metabólica fueron propuestas para aumentar la producción de GGL en E. Coli. Las primeras cuatro estrategias se centraron en aumentar el pool del precursor lipídico, DAG. Para ello, la primera estrategia se basó en incrementar la disponibilidad de DAG a través de la eliminación de reacciones competitivas. Para lograrlo, se knockearon diferentes genes relacionados con la ß-oxidación y la activación de ácidos grasos (∆tesA y ∆fadE) reportando un incremento de casi el doble. La segunda estrategia se basó en incrementar la disponibilidad de ácidos grasos mediante la modulación de factores de transcripción (fabR y fadR). Aunque estrategia no reportó una mejora en el rendimiento de GGL, sí mostró un cambio en el perfil de los ácidos grasos con un incremento de los ácidos grasos insaturados. La tercera estrategia se basó en incrementar la conversión de los donadores de acilos a ácido fosfatídico, precursor del DAG, mediante la sobreexpresión de las aciltransferasas PlsC y PlsB. La cuarta estrategia se centró en aumentar la disponibilidad de diacilglicerol mediante la sobreexpresión de la proteína de fusión PlsCxPgpB capaz de redirigir el flujo de DAG, o CDH promoviendo la hidrólisis de fosfolípidos. Entre las diferentes cepas modificadas, la cepa ∆tesA coexpresando MG517 y la proteína de fusión PlsCxPgpB fue la mayor productora, con un incremento de los niveles de GGL del 350%, comparándola con la cepa parental expresando únicamente MG517. Interesantemente, las cepas coexpresando CDH mostraron un cambio en el perfil de GGL hacia el lípido diglucosilado (hasta el 80% del total del GGLs). Finalmente, una estrategia metabólica fue propuesta para aumentar la disponibilidad del otro precursor, UDP-Glc. La quinta estrategia se basó en la sobreexpresión de la enzima GalU, responsable de la biosíntesis de UDP-Glc, y la eliminación de la UDP-azúcar difosfatasa codificada por el gen ushA. Sin embargo, ninguna de estas modificaciones mejoró los niveles de GGL. Por último, tal y como reportó nuestro grupo que la fosfatidiletanolamina era intercambiable en las membranas de E. coli por los nuevos compuestos GGL, una librería de promotores y RBS fue diseñada para disminuir la producción de este fosfolípido intentando al mismo tiempo aumentar la producción de glicolípidos. |
|
Director/a |
||
Departamento IQS SE - Bioenginyeria |
||
Fecha de defensa 2020-09-28
|