Specially designed polyaniline/polypyrrole ink for a fully printed highly sensitive pH microsensor

Authors

Zea, Miguel; Texidó, Robert; Villa, Rosa; Borrós, Salvador; Gabriel, Gemma

Abstract

pH sensing for healthcare applications requires sensors with mechanically stable materials of high sensitivity and high reproducibility combined with low-cost fabrication technologies. This work proposes a fully printed pH sensor based on a specially formulated conducting polymer deposited on a microelectrode in a flexible substrate. A formulation, which combined polyaniline (PANI) and polypyrrole (PPy) with integrated polyelectrolyte poly(sodium 4-styrenesulfonate) (PSS), was specially prepared to be printed by inkjet printing (IJP). The sensor has good sensitivity in the physiological region (pH 7–7.5) key for the healthcare biosensor. This mixture printed over a commercial gold ink, which has a singular chemical functionalization with phthalocyanine (Pc), increased the sensor sensitivity, showing an excellent reproducibility with a linear super-Nernstian response (81.2 ± 0.5 mV/pH unit) in a wide pH range (pH 3–10). This new ink together with the IJP low-cost technique opens new opportunities for pH sensing in the healthcare field with a single device, which is disposable, highly sensitive, and stable in the whole pH range.

WoS

Scopus

 

Altmetrics

  

 

Journal

ACS Applied Materials & Interfaces, 21 July 2021, v.13, n.28, p. 33524-33535

Publication date

2021-07-21

DOI

https://doi.org/10.1021/acsami.1c08043