Autors/es
Ramos-Soriano, Javier; Pérez-Sánchez, Alfonso; Ramírez-Barroso, Sergio; Illescas, Beatriz M.; Azmani, Khalid; Rodríguez-Fortea, Antonio; Poblet, Josep M.; Hally, Cormac; Nonell, Santi; García-Fresnadillo, David; Rojo, Javier; Martín, Nazario
|
Abstract
Suitably engineered molecular systems exhibiting triplet excited states with very long lifetimes are important for high-end applications in nonlinear optics, photocatalysis, or biomedicine. We report the finding of an ultra-long-lived triplet state with a mean lifetime of 93 ms in an aqueous phase at room temperature, measured for a globular tridecafullerene with a highly compact glycodendrimeric structure. A series of three tridecafullerenes bearing different glycodendrons and spacers to the C60 units have been synthesized and characterized. UV/Vis spectra and DLS experiments confirm their aggregation in water. Steady-state and time-resolved fluorescence experiments suggest a different degree of inner solvation of the multifullerenes depending on their molecular design. Efficient quenching of the triplet states by O2 but not by waterborne azide anions has been observed. Molecular modelling reveals dissimilar access of the aqueous phase to the internal structure of the tridecafullerenes, differently shielded by the glycodendrimeric shell.
|
WoS
Scopus
Altmetrics
|
Publicació
Angewandte Chemie: international edition, 12 July 2021, v.60, n.29, p. 16109-16118
|